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Abstract
The eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual
differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces).
Here we proposed to combine EMHMM with the data mining technique co-clustering to discover participant groups with
consistent eye-movement patterns across stimuli for tasks involving stimuli with different feature layouts. Through applying
this method to eye movements in scene perception, we discovered explorative (switching between the foreground and back-
ground information or different regions of interest) and focused (mainly looking at the foreground with less switching) eye-
movement patterns among Asian participants. Higher similarity to the explorative pattern predicted better foreground object
recognition performance, whereas higher similarity to the focused pattern was associated with better feature integration in the
flanker task. These results have important implications for using eye tracking as a window into individual differences in cognitive
abilities and styles. Thus, EMHMM with co-clustering provides quantitative assessments on eye-movement patterns across
stimuli and tasks. It can be applied to many other real-life visual tasks, making a significant impact on the use of eye tracking
to study cognitive behavior across disciplines.
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Introduction

Eye-movement behavior has been shown to reflect underlying
cognitive processes, and thus can potentially reveal individual
differences in perception styles and cognitive abilities. For
example, in scene perception, Chua et al. (2005) observed that
Westerners made more eye fixations on foreground objects
than Asians, whereas Asians looked at the backgrounds more
often, and this difference was reflected in their object recog-
nition performance (Masuda et al., 2016; Miyamoto et al.,

2006). In face recognition, Peterson and Eckstein (2013) re-
ported that individuals have different optimal viewing points,
and deviation from this person-specific optimal viewing point
impairs recognition performance, demonstrating the associa-
tion between eye-movement patterns and task performance.
People with cognitive deficits, such as neurodegenerative or
psychotic disorders, have been reported to have atypical eye-
movement patterns in visual tasks (e.g., Daffner et al., 1992),
suggesting eye movements may be used for early detection of
cognitive deficits.

Nevertheless, traditional approaches for analyzing eye-
movement data, such as the use of predefined regions of in-
terests (ROIs) on the stimuli (e.g., Barton et al., 2006) or the
use of fixation heat maps/salience maps (e.g., Caldara &
Miellet, 2011; Toet, 2011) do not adequately reflect individual
differences in either spatial dimension (such as ROI choices)
or temporal dimension (such as gaze transition among the
ROIs) of eye movements. There have been attempts in using
temporal information of eye movements in the analysis, such
as using Levenshtein distance or sequence alignment algo-
rithms to quantify and compare similarities of scan paths de-
fined as a sequence of predefined ROIs visited (e.g.,
ScanMatch by Cristino et al., 2010; Goldberg & Helfman,
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2010) or vector-based representations (Jarodzka et al., 2010).
However, these methods typically did not reflect individual
differences in spatial dimension of eye movements such as
ROI choices (see Le Meur & Bassino, 2013, for a review).
von der Malsburg and Vasishth (2011) proposed the Scasim
method to quantify similarities among fixation sequences by
using an edit distance between fixations in visual angle instead
of predefined ROIs. Using the similarities, the fixation se-
quences are then embedded into a vector space using multi-
dimensional scaling (MDS) for further analysis, e.g., K-means
clustering. While the similarity measure reflects both spatial
and temporal dimension of fixation sequences, the analysis in
the vector space may have limited interpretability with respect
to the underlying fixation sequences due to the one-way map-
ping of the MDS embedding (called the “pre-image” problem
of similarity-based embedding methods). For example, given
a group centroid vector discovered with k-means clustering, a
novel fixation sequence representing the group centroid (i.e.,
the group representative strategy) cannot be recovered due to
the one-way mapping of the embedding. Instead, the fixation
sequence in the dataset mapped closest to the centroid is used
as a ‘prototype’ for the group.

Thus, to better understand individual differences in eye-
movement patterns, quantitative measures of eye-movement
patterns that reflect individual differences in both spatial and
temporal dimensions of eye movements are required.
Recently there have been attempts of using machine-
learning methods to infer characteristics of the observer from
eye-movement data (e.g., Kanan et al., 2015). These studies
typically use classifiers to discover eye-movement features
important for distinguishing two or more observers.
However, the classifiers only look for features important for
separating the observers, and do not tell us about eye-
movement patterns associated with a particular observer. To
address this issue, we have recently proposed a novel machine
learning-based approach for eye-movement data analysis,
eye-movement analysis with hidden Markov models
(EMHMM; Chuk et al., 2014; HMM is a type of time-series
statistical model in machine learning). EHMMM takes indi-
vidual differences in spatial (eye fixation locations) and tem-
poral dimensions (the order of eye fixation locations) of eye
movements into account (EMHMM Matlab toolbox is avail-
able at http://visal.cs.cityu.edu.hk/research/emhmm/). With
EMHMM, a sequence of viewed regions of interest (ROIs)
is represented by a hidden state sequence, which evolves ac-
cording to a Markov process where the currently viewed ROI
(state) depends on the previously viewed ROI. Since only the
fixation locations are observed (measured by the eye tracker),
and not their corresponding ROIs, the ROI sequence is hidden
and must be inferred from the fixation sequence. Previous
studies using HMMs/probabilistic models for modelling eye
movement/visual attention and cognitive behavior typically
used hidden states of the models to represent cognitive states.

For example, Liechty et al. (2003) used two hidden states to
represent global and local covert attention in a visual attention
model (see also Simola et al., 2008). Yi and Ballard (2009)
used states in a dynamics Bayes network to represent subtask
goals in modeling task control in sandwich making (see also
Hayhoe & Ballard, 2014). Other approaches using Gaussian
mixture models (Eckhardt et al., 2013) and heat maps (Caldara
& Miellet, 2011) ignore the temporal information in eye
movements. In contrast, here we directly use HMMs to model
eye fixation sequences (i.e., the inputs of the models are se-
quences of fixation locations), and hidden states of the models
directly correspond to ROIs of eye movements. Each ROI is
modelled by a Gaussian emission, which represents the distri-
bution of fixation locations when the individual viewed that
ROI1. This allows us to discover ROIs and transitions among
ROIs specific to an individual (see also Chuk et al., 2020, for
EMSHMM, which models transitions of both ROIs and cog-
nitive states using a two-level switching HMM). In addition,
to account for individual differences, we use one HMM to
model one person’s eye-movement pattern in terms of both
person-specific ROIs and transitions among the ROIs. An
individual’s HMM is estimated from the individual’s data
using a variational Bayesian approach that can automatically
determine the number of ROIs. Since HMMs correspond to
probability distributions of time-series, the individual HMMs
can be clustered according to the similarities of their corre-
sponding probability distributions (using the variational HEM
algorithm; Coviello et al., 2014) to reveal representative com-
mon patterns, such as the holistic (i.e., mainly looking at the
face center) vs. analytic (i.e., looking at both the face center
and individual eyes) patterns in face recognition (Fig. 1).
Differences among individual eye-movement patterns can be
quantitatively assessed using data log-likelihood measures,
that is, the log-likelihood of a person’s eye-movement data
being generated by the model of a representative common
pattern. This log-likelihood measure reflects the similarity be-
tween a person’s eye-movement pattern and the representative
common pattern, such as how holistic or how analytic a per-
son’s eye-movement pattern is in face recognition. Thus, this
method is particularly suitable for examining individual dif-
ferences in eye-movement pattern and their associations with
other cognitive measures. Also, since EMHMM is a Bayesian
probabilistic time-series model, it works well with a limited
amount of data, in contrast to deep learning models that gen-
erally require large amounts of data to train effectively.

We have successfully applied EMHMM to face recogni-
tion research, discovering novel findings thus far not revealed
by existing methods. For example, we discovered two

1 In the EMHMMmethod, we can add fixation duration as an additional input
dimension such that each input data point is represented as fixation location x,
fixation location y, and fixation duration. In this case, each hidden state of the
HMM corresponds to an ROI associated with a fixation duration distribution.
This has been implemented in Chuk et al. (2017a).
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common eye-movement patterns, holistic pattern vs. analytic
pattern, for face learning and recognition through clustering.
Since each participant’s eye-movement pattern during face
learning or recognition could be classified as a holistic or an
analytic pattern according to the clustering results, we found
that around 40% of the participants used different patterns
between learning and recognition. Participants who used the
same or different patterns during learning and recognition did
not differ in recognition performance, in contrast to the scan
path theory (Noton & Stark, 1971a, 1971b), which posits that
eye movements during learning have to be recapitulated dur-
ing recognition for the recognition to be successful
(Chuk et al., 2017a). We also found the analytic eye-
movement (eyes-nose) pattern during recognition was associ-
atedwith better recognition performance as comparedwith the
holistic (nose-focused) pattern (Fig. 1), suggesting that retriev-
al of diagnostic information (i.e., the eyes) is a better predictor
for performance (e.g., Chuk et al., 2017b; Chuk et al., 2017a;
Hsiao et al., 2021; Chan et al., 2018). In another study, we
found that local attention priming using hierarchical letter
stimuli made participants’ eye movements more analytic and
increased their recognition performance, as compared with no
priming or global attention priming conditions (Cheng et al.,
2015). This result suggests an association between engage-
ment of local attention and analytic eye-movement patterns,
which consequently improve recognition performance. These
findings are consistent with the recent visual recognition liter-
ature showing that analytic/featural information is important
for recognition in addition to holistic/configural information
(Cabeza & Kato, 2000; Cheng et al., 2018; Hsiao & Galmar,
2016; Tso et al., 2020; Tso et al., 2014).

In particular, our recent research using EMHMM has sug-
gested that individuals have preferred eye-movement patterns
for face processing that are impervious to the influence of tran-
sitory mood changes (An & Hsiao, in press) and able to predict
not only recognition performance but also cognitive abilities,
particularly executive and visual attention functions (Chan
et al., 2018). For example, we found that more older adults
adopted the holistic (nose-focused) pattern in face recognition

whereas more young adults used the analytic (eyes-nose) pat-
tern, and that eye-movement pattern similarity to the represen-
tative holistic pattern predicted lower cognitive status in older
adults as assessed using Montreal Cognitive Assessment (HK-
MoCA, Yeung et al., 2014). In a second experiment, this cor-
relation was replicated with new participants viewing new face
images using the representative HMMs from the first experi-
ment. This finding suggests the possibility of developing repre-
sentative HMMs from the population for cognitive screening
purposes. In a brain imaging study with young adult partici-
pants, we found that holistic patterns in face recognition were
associated with lower activation in brain regions important for
top-down control of visual attention including frontal eye field
and intraparietal sulcus (Chan et al., 2016). In another study
(Zhang et al., 2019), we found that insomniacs’ impaired ability
for facial expression judgments was associated with their use of
an eye-movement pattern that focused on the nose and mouth
regions but not the eyes, suggesting impaired visual attention
control (see also Chan et al., 2020a, b). In tasks other than face
processing, we found that a more centralized eye-movement
pattern when viewing documentary videos was associated with
better comprehension and better executive function ability (as
assessed using a problem-solving task, Tower of London.
Zheng et al., 2019). Together these results suggest the possibil-
ity of using eye tracking as an easily deployable screening
assessment for cognitive deficits.

While we have been successful in using the EMHMMmeth-
od to understand individual differences in eye movements in
some visual tasks, particularly in face recognition, currently it is
limited to tasks involving stimuli with the same feature layout
(e.g., faces) so that discovered ROIs correspond to the same
features across stimuli (e.g., individual facial features).
Nevertheless, in many real-life tasks, such as scene perception,
website browsing, or reading, stimuli have different feature
layouts. Thus, looking at the same location across stimuli does
not usually correspond to looking at the same feature, and eye
fixations on similar features across stimuli do not usually cor-
respond to looking at the same location. As the EMHMM ap-
proach summarizes participants’ eye-movement patterns based

Fig. 1 Holistic (nose-focused) and analytic (eyes-nose) eye-movement
patterns discovered in face recognition (Chan et al., 2018). Ellipses show
ROIs as 2-D Gaussian emissions. The table shows transition probabilities

among the ROIs. Priors show the probabilities that a fixation sequence
starts from an ROI. The two smaller images show the assignment of
actual fixations to the ROIs and the corresponding heatmap
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on only fixation locations, it does not have the capacity to
discover consistent perceptual styles across stimuli with differ-
ent feature layouts (such as the preference to mainly look at the
foreground or the background) either within a participant or
across participants. There is also no existing eye-movement
data analysis method that can summarize and compare individ-
uals’ perceptual styles across stimuli with different feature lay-
outs from both the temporal and spatial dimensions of eye
movements. In order to replicate our success in research fields
other than face recognition and have a broader impact on cog-
nitive research using eye tracking, it is essential to develop new
EMHMM methodologies for these scenarios.

We have previously proposed inclusion of perceived im-
ages as features in the ROI representations. While this method
has significantly improved discovery of ROIs (Brueggemann
et al., 2016), it does not work well when features among stim-
uli differ significantly, such as in scene viewing. Here we
propose a new method: we model each participant’s eye-
movement pattern when viewing a particular stimulus with
one HMM, and then use the data mining technique co-
clustering (e.g., Govaert & Nadif, 2013) to discover partici-
pants sharing similar eye-movement patterns across stimuli.
The co-clustering formulation ensures that the participant
groups are consistent across all stimuli. Thus, this method is
particularly suitable for discovering representative perceptual
styles in a visual task among participants under the assump-
tion that each participant exhibits a consistent perceptual style
across the stimuli2. The result is a grouping of participants and
their representative HMMs for each stimulus (Fig. 2). The
similarity between an individual’s eye-movement patterns
across stimuli and the representative HMMs of a participant
group can be quantitatively assessed using log-likelihood
measures as in the existing approach, or more specifically,
by summing over the log-likelihood measures of the individ-
ual’s eye movements across the representative HMMs (see the
Data Analysis section for details). This similarity measure
then can be used to examine the relationship between eye-
movement patterns and other cognitive measures. In addition,
we use a variational Bayesian approach to automatically de-
termine the optimal number of participant groups (following a
similar approach to Lan et al., submitted). We provide the
programs for performing this analysis method as a Matlab
toolbox, EMHMM with Co-clustering, publicly available to
the community under an open-source license agreement.

To demonstrate the advantage of the EMHMM with co-
clustering method in understanding individual differences in
eye-movement pattern in visual tasks that involve stimuli with
different feature layouts, here we use scene perception as an

example, since visual scenes differ significantly in feature
layout and characteristics, providing a challenging scenario
for the new methodology. Recent research has shown that
scene perception involves complex and dynamic perceptual
and cognitive processes that can be influenced by both ob-
servers’ goals and diverse scene properties at multiple levels
(Malcolm et al., 2016). Eye movements during scene percep-
tion have been found to reflect the complexity of cognitive
processes involved, and thus can potentially provide rich in-
formation about individual differences in perception styles
and cognitive abilities. Here we aimed to use EMHMM with
co-clustering to examine individual differences in eye-
movement pattern and their associations with object recogni-
tion performance and cognitive abilities during scene viewing.
We use scene images from both natural and man-made/urban
environments to increase stimulus generality, as they have
significantly different global scene properties that could be
distinguished by humans the most efficiently (Greene &
Oliva, 2009; Joubert et al., 2007). Specifically, we examined:
(1) what types of scene images (animals in nature vs. vehicles
in a city) could induce larger individual differences in eye-
movement pattern, and (2) whether eye-movement patterns
during scene viewing are associated with subsequent fore-
ground object recognition performance and cognitive abilities.
Previous studies have reported two eye-movement patterns in
scene perception: one lookingmainly at the foreground object,
whereas the other looking at both the foreground and the
background and switching between them; also, the latter pat-
tern was associated with better performance in foreground
object recognition with the old background (Chua et al.,
2005). Accordingly, we predicted to discover similar eye-
movement patterns in our participants, and individual differ-
ences in eye-movement pattern would be associated with fore-
ground object recognition performance. In addition, our pre-
vious studies (e.g., Chan et al., 2018; Zheng et al., 2020) have
shown that eye-movement patterns in visual tasks are associ-
atedwith cognitive abilities, particularly in executive function,
visual attention, and working memory. We predicted that eye
movements in scene perception would also be associated with
these abilities. Also, as previous research has suggested
category-specific attention to animals (New et al., 2007), an-
imals with a natural background may catch more initial atten-
tion and subsequently better reveal individual differences in
analytic/holistic style than scenes with man-made objects.

Methods

Participants

In the examination on face recognition performance difference
between participants using different eye-movement patterns
(i.e., analytic vs. holistic), Chuk et al. (2017b) observed a large

2 When participants do not have a consistent perceptual style across the stim-
uli, the co-clustering will be driven by the consistency exhibited by the major-
ity of the stimuli. Consequently, the representative patterns discovered for a
stimulus inconsistent with the majority will tend to be more similar to each
other.
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effect size. A power analysis showed that 52 participants were
required to observe a group difference with a large effect size
(d = 0.8), α = 0.5, and power = 0.8. Accordingly, we aimed to
recruit 60 Asian participants. In the end, 61 participants par-
ticipated (as one participant cancelled the booking but still
showed up for the experiment). They were 35 females and
26 males, aged 18–25 (M = 20.77, SD = 1.70), from the
University of Hong Kong. All participants had normal or
corrected-to-normal vision.

Materials

The materials consisted of 150 scene images with animals in a
natural environment and 150 scene images with vehicles in an
urban environment from the Internet. Images with different
numbers of foreground objects, feature layouts, and locations
of foreground objects were used to increase stimulus variabil-
ity to provide adequate opportunities to elicit individual dif-
ferences in eye-movement pattern. All images were adjusted
to equalize brightness and contrast.

Design and procedure

The scene perception task consisted of a passive viewing
phase and a surprise recognition phase (following Chua
et al., 2005). During the passive viewing phase, for each scene
type (animals vs. vehicles), participants were presented with
60 images one at a time, each for 5 s, and rated from 1 to 5
how much they liked the image. During the surprise recogni-
tion phase, for each scene type, participants were presented
with 60 images with old foreground objects, with half of them
presented in the same old background and the other half in a
new background, together with the same number of lure im-
ages with new objects in a new background. They were

presented with the images one at a time and judged whether
they saw the foreground object during the passive viewing
phase. The image stayed on the screen until response. In both
phases, the animal and vehicle scene images were presented in
two separate blocks, with the block order counterbalanced
across participants. This block design was chosen in order to
reduce the influence from switching between different image
types during the experiment in examining possible eye-
movement pattern difference between viewing animal and ve-
hicle images. Participants’ eye movements were recorded
using an EyeLink 1000 eye tracker, with a chinrest to mini-
mize head movements. Each trial started with a fixation cross
at the screen center. The experimenter initiated the image pre-
sentation when a stable fixation was observed at the fixation
cross. An image was then presented at the screen center, span-
ning 35° x 27° of visual angle at a viewing distance of 60 cm.
Before each block, a nine-point calibration procedure was
performed. Re-calibration took place whenever drift correc-
tion error exceeded 1° of visual angle.

In addition, participants performed three cognitive tasks to
examine whether their eye-movement patterns were associat-
ed with cognitive abilities.

(1) Tower of London task (Phillips et al., 2001) for testing
executive function/planning abilities: In each trial, par-
ticipants saw three beads randomly placed on three pegs
as the starting position, together with the target position.
They were asked to move one bead at a time to reach the
target position as quickly as possible with the minimum
number of moves and to plan the moves in mind before
execution. In total there were ten trials. The total number
of extra moves, number of correct trials, total planning
time before executing the first move, and total execution
time for the moves were measured.

Fig. 2 Illustration of EMHMMwith co-clustering. Left: each subject (Si)
has an HMM to summarize the eye-movement pattern for each stimulus
(Ii). Circles indicate ROIs. Right: The co-clustering algorithm groups
together participants whose eye-movement patterns were similar to one
another when viewing each of the stimuli (Ii) consistently. In this

example, S1 and S2 are clustered together to form Group 1 since their
eye-movement patterns were similar to each other when viewing I1, I2,
and I3 consistently, and a representative HMM is generated for each
stimulus (Ii) by summarizing the eye-movement patterns of the stimulus
from S1 and S2 using an HMM; similarly for S3 and S4 forming Group 2
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(2) Flanker task (Ridderinkhof et al., 1999) for testing selec-
tive attention: Participants judged the direction of an ar-
row flanked by four other arrows. In the congruent con-
dition, the flanking arrows pointed in the same direction
as the target arrow, whereas in the incongruent condition,
the flanking arrows pointed at the opposite direction. In
the neutral condition, the flankers were non-directional
symbols. In total there were 120 trials, with 40 trials in
each condition.

(3) Verbal and visuospatial two-back task for assessing
working memory capacity (Lau et al., 2010): In each
trial, participants judged whether the presented symbol/
symbol location was the same as the one presented two
trials back in the verbal/visuospatial task, respectively.
There were 50 trials in each of the verbal and visuospa-
tial two-back tasks.

Data analysis

We analyzed participants’ eye movements during the passive
viewing phase using EMHMM with co-clustering. First, each
participant’s eye movements for viewing each stimulus were
summarized using an HMM. In particular, an individual’s
HMM was estimated from a participant’s eye-movement data
using a variational Bayesian approach, where prior distribu-
tions are placed on the HMM parameters (e.g., transition ma-
trix, Gaussian emissions, prior probabilities), and a posterior
distribution of the individual’s HMM is estimated given the
data. The optimal hyperparameters of the prior distributions
and number of ROIs are determined by maximizing the
marginal log-likelihood of the data, which automatically
trades off between model fit and model complexity.3 To de-
termine the number of ROIs for an individual’s HMM, we
learn HMMs with different numbers of ROIs (within the pre-
se t range of 2–4, inc lus ive) v ia opt imizing the
hyperparameters. We then select the resulting HMM with
the highest marginal log-likelihood. Second, individual
HMMs for viewing each stimulus were clustered to discover
representative patterns among the participants. Co-clustering
was used to cluster participants into groups according to
whether they used similar eye-movement patterns across the
stimuli (Fig. 2). In particular, the variational Bayesian hierar-
chical EM (VBHEM) algorithm (Lan et al., submitted), which
clusters a set of individuals’ HMMs for viewing a stimulus
into groups using the variational Bayesian approach to deter-
mine the optimal number of groups and forms representative
HMMs for each group, was modified to perform co-clustering

over several sets of HMMs, where each set corresponds to
individuals’ HMMs for one stimulus. VBHEM assumes prior
distributions on the parameters of the representative HMMs
and their cluster probabilities and aims to find representative
HMMs that have maximum expected marginal log-likelihood
according to time-series distributions of the individuals’
HMMs. The optimal hyperparameters of the prior distribu-
tions and number of clusters is automatically determined by
maximizing the expected marginal log-likelihood of the data.
We did not place a prior on the number of clusters, since the
Dirichlet prior on the cluster probabilities already naturally
selects the number of clusters. To obtain the optimal number
of clusters, we learn representative HMMs for different num-
ber of clusters (from 1 to 5, inclusive) by optimizing the
hyperparameters. We then select the resulting model (number
of clusters) with highest expected marginal log-likelihood.
VBHEM with co-clustering is equivalent to running
VBHEM separately on each set of HMMs (one set for each
stimulus), except that it computes consistent cluster assign-
ments of individuals to groups across all stimuli (i.e., all runs
of VBHEM) such that a participant would be consistently
assigned to the same group across all sets of HMMs. The
result of co-clustering is a set of representative HMMs (one
for each stimulus) for each group.

A formal derivation of VBHEM with co-clustering can be
found in the Appendix. Note that we have previous extended
the variational hierarchical EM (VHEM) algorithm (Coviello
et al., 2014) to perform co-clustering (Hsiao et al., 2019),
which clusters a set of individuals’ HMMs into groups and
forms representative HMMs for each group across each stim-
ulus, using a prespecified number of clusters. In the Appendix
we also provided a formal derivation of VHEM with co-clus-
tering. Using VHEM with co-clustering, instead of VBHEM
with co-clustering, is provided as an option in the EMHMM
with Co-clustering toolbox. Note that in both versions of co-
clustering, the number of ROIs used for generating the repre-
sentative HMMs for each stimulus can be determined sepa-
rately. Thus, the representative HMMs of different stimuli can
have different numbers of ROIs. In the current version of the
EMHMM with co-clustering toolbox, the default setting is to
set the number of ROIs of the representative HMMs for each
stimulus to be the median number of ROIs of the individual
HMMs,4 and the number of ROIs in an individual HMM is
determined using a variational Bayesian approach to derive
the optimal number of ROIs from a pre-set range (here we set
it to be from 2 to 4 ROIs) given the data (thus, individual

3 This method for model selection is also called “empirical Bayes” in statistics
or “evidence approximation” in machine learning. See Chapter 5 of
Rasmussen and Williams (2006) or Chapter 3.4 of Bishop (2006) for detailed
discussions.

4 In principle, the numbers of ROIs for a representative HMM for a stimulus
can be estimated automatically by maximizing the expected marginal log-
likelihood. However, this requires a search over an exponential number of
combinations of numbers of ROIs, which is computationally infeasible.
Thus, for simplicity and computational efficiency, we assume the number of
ROIs of a representative HMM (for a stimulus) is the median of number of
ROIs in the individual HMMs.
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HMMs may have different numbers of ROIs). However, the
number of ROIs in both individual HMMs and representative
HMMs can be changed according to the user’s analysis re-
quirements. Also, the toolbox will remove an ROI (or in other
words, a hidden state) that is not used after training in both
individual and representative HMMs. Here we reported the
results using VBHEM with co-clustering and the default
setting.

To examine whether animal (natural) or vehicle (man-
made) images could induce larger individual differences in
eye-movement pattern, we quantified the difference between
any two representative patterns for each stimulus as the result
of co-clustering via the symmetric KL (SKL) divergence be-
tween the two group HMMs. The SKL is given by (KL12+
KL21)/2, where KL12 is the KL divergence between the prob-
ability distribution of fixation sequences from the Group 1
representative HMM and that of Group 2, and vice-versa for
KL21 (KL is not symmetric). More specifically, KL12 is esti-
mated by the log-likelihood of Group 1 data (fixation se-
quences) being generated by Group 1 HMM minus the log-
likelihood of Group 1 data being generated by Group 2 HMM
(Chuk et al., 2014). Similarly, KL21 is estimated by the log-
likelihood of Group 2 data being generated by Group 2 HMM
minus the log-likelihood of Group 2 data being generated by
Group 1 HMM.Using SKL to quantify the difference between
representative patterns thus takes both fixation locations and
the temporal order the fixations into account. We then com-
pared SKL measures for animal and vehicle images and ex-
amined the characteristics of the images that typically led to
larger SKL.

We also examined whether the two groups of participants
as the result of co-clustering differed in performance in fore-
ground object recognition and the cognitive tasks. To examine
the correlations between eye-movement pattern and recogni-
tion performance/cognitive abilities, we quantified the simi-
larity of a participant’s eye-movement pattern to the group
patterns using a cluster score, CS = (L1-L2) / (|L1|+|L2|), where
L1 and L2 are the log-likelihoods of a participant’s data being
generated under Group 1 and Group 2 pattern, respectively
(Chan et al., 2018). Larger/positive values of CS indicate
higher similarity to Group 1, and smaller/negative values in-
dicate similarity to Group 2.

Results

Eye-movement patterns in scene perception

On average, participants made 13.42 fixations per trial (SD =
1.81) when they passively viewed scene images, each for 5 s.
Using the eye-movement data from 61 participants on 120
image stimuli, EMHMM with co-clustering discovered two
groups from the data. Group 1 contained 33 participants and

Group 2 contained 28 participants. The co-clustering model
estimates two representative HMMs for each image stimulus,
corresponding to the representative patterns of Groups 1 and
2. Clustering algorithmsmay sometimes find overlapped clus-
ters, when there is not a large separation in the data. Thus, to
examine whether participants in the two groups as the result of
co-clustering had statistically significantly different eye-
movement patterns, for each participant we calculated Group
1 data likelihood as the log-likelihood of the participant’s eye-
movement data being generated from the Group 1 representa-
tive HMMs (averaged across the HMMs of the stimuli), and
similarly for Group 2 data likelihood. If participants in Group
1 and Group 2 had significantly different eye-movement pat-
terns, we expected that participants in Group 1 should have
larger Group 1 data likelihood than Group 2 data likelihood,
whereas those in Group 2 should have larger Group 2 data
likelihood than Group 1 data likelihood (Chuk et al., 2014).
The results showed that participants in Group 1 had signifi-
cantly higher Group 1 data likelihood than Group 2 data like-
lihood, t(32) = 15.40; p < 0.001, d = 2.68, 95%CI [0.22, 0.28].
Similarly, participants in Group 2 had significantly higher
Group 2 data likelihood than Group 1 data likelihood, t(27)
= 8.96; p < 0.001, d = 1.69, 95% CI [0.18, 0.28]. This result
demonstrated that participants in Group 1 and Group 2 had
significantly different eye-movement patterns in scene
perception.

We also examined which types of images, animal or vehi-
cle images, induced larger eye-movement pattern difference
between participants in Group 1 and Group 2. For each image,
the difference between the representative patterns in Group 1
and Group 2 was measured in SKL. As shown in Fig. 3,
animal images induced larger differences in eye-movement
pattern between Group 1 and Group 2 than vehicle images,
t(118) = – 6.39; p < 0.001, d = – 1.17, 95%CI [– 0.33, – 0.17].

Figure 4 presents six example images and their correspond-
ing representative HMMs in Group 1 and Group 2. Figure 4b1
to 4b3 shows two example images where the corresponding
representative HMMs for the two groups had a large SKL
difference. As can be seen in the figure, Group 2 focused more
on the foreground object and showed a higher probability to
stay looking within the same ROI, while Group 1 explored the
image more by looking at both the foreground object and the
background and exhibited higher probabilities to transit
among different ROIs. When looking at an animal face,
Group 2 focused more on the eyes, whereas Group 1 looked
at the nose (Fig. 4c). Figure Fig. 4b4 to Fig. 4cd6 shows
example images where participants in the two groups had
similar eye-movement patterns. In general, larger differences
in eye-movement pattern between the two groups occurred on
images where the foreground object (animal or car) was sa-
lient as compared with the background, e.g., an animal among
trees, or a car on a road. As humans have category-specific
attention for animals (e.g., New et al., 2007), which make
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animals more salient than vehicles, the animal images gener-
ally induced larger individual differences in eye-movement

patterns than vehicle images. In contrast, images with
cluttered backgrounds and non-interesting foreground objects

Fig. 3 Histograms of SKL divergence between Group 1 and Group 2 patterns on vehicle or animal images. In general, animal images induced larger
SKL divergence between the two groups than vehicle images

Fig. 4 a Example stimuli. b Representative HMMs of the example
stimuli in the two participant groups resulting from co-clustering. The
two groups showed larger difference in eye-movement pattern when
viewing the first three images and smaller difference when viewing the
last three images, as measured by symmetric KL divergence (SKL). c

Heatmap plots of eye fixations on the first image for the two groups,
and the difference regions (orange for Group 1, blue for Group 2). The
explorative group looked at the center of the koala’s face more whereas
the focused group looked at the eye region of the koala’s face more
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typically induced similar eye-movement patterns. For current
purposes, we referred to Group 1 and 2 patterns as the explor-
ative and focused pattern, respectively, and the cluster score
between the two group patterns as the explorative-focused
(EF) scale. Indeed, participants using the explorative pattern
had a larger average number of fixations, t(59) = 2.45, p = <
.017, d = 0.63, 95% CI [0.20, 1.99], and longer saccade
lengths, t(59) = 2.33, p < .023, d = 0.60, 95% CI [1.31,
17.33], than those using the focused pattern, and the more
similar their eye-movement pattern to the explorative pattern
(in EF scale), the larger the average number of fixations, r(59)
= 0.358, p < .001, 95% CI [0.12, 0.56], and saccade length,
r(59) = 0.362, p < .001, 95% CI [0.12, 0.56] (Fig. 5a and b).
As EMHMM does not use sequence length or saccade length
information, the differences in average number of fixations
and saccade length emerged naturally as the result of the clus-
tering. These results were consistent with the interpretation
that Group 1 was more explorative than Group 2.

Reliability of the log-likelihood measures in assessing
one’s eye-movement pattern

To examine the reliability of the log-likelihood measures and
the EF scale in assessing one’s eye-movement pattern in scene
perception, we performed split-half reliability test (Spearman–
Brown corrected) by splitting the 60 images into two halves of
15 animal and 15 vehicle images each. The results showed
that both the log-likelihood measures (log-likelihood measure
of the explorative pattern, rsb = .96; log-likelihood measure of
the focused pattern, rsb = .98) and the EF scale (rsb = .99) had
excellent split-half reliability. This result suggested that indi-
vidual participants exhibited consistent eye-movement pat-
terns across the scene images as assessed using the
EMHMMmethod. Note that in the current study, the discrim-
ination sensitivity d’ in the scene recognition task (120 trials in
total) had good split-half reliability (rsb = .88) and average
reaction time had excellent split-half reliability (rsb = .99).
This result suggested that reliability of the eye-movement pat-
tern measure using EMHMM was comparable to and some-
times exceeded that of performance measures.

In a separate analysis, we examined the consistency of
individual participants’ eye-movement pattern in viewing an-
imal vs. vehicle images. The results showed that when we
performed split-half reliability test by splitting the images ac-
cording to image type (animal vs. vehicle), both the log-
likelihood measures (log-likelihood measure of the explor-
ative pattern, rsb = .80; log-likelihood measure of the focused
pattern, rsb = .87) and the EF scale (rsb = .92) still had good to
excellent reliability. This result suggested that individuals had
consistent eye-movement patterns across image types as
assessed using EMHMM.

Does eye-movement pattern predict foreground ob-
ject recognition performance?

To examine whether participants using explorative and fo-
cused eye-movement patterns differ in foreground object rec-
ognition performance, a 2 x 2 ANOVA on recognition perfor-
mance was conducted with eye-movement group (Group 1
explorative pattern vs. Group 2 focused pattern) as a
between-subject variable and image background (old vs.
new) as a within-subject variable. The results showed a main
effect of group, F(1, 59) = 5.79, p = .019, η2 = 0.089: partic-
ipants using the explorative pattern performed significantly
better than those using the focused pattern. This effect
interacted with image background, F(1, 59) = 4.54, p = .037,
η2 = 0.072: the advantage of the explorative pattern in fore-
ground object recognition performance was significantly larg-
er when the foreground object was presented with the old
background than with a new background, although the advan-
tage was significant in both cases (old background: t(59) =
2.41, p = .019, d = 0.62, 95% CI [0.08, 0.85]; new back-
ground: t(59) = 2.15, p = .036, d = 0.55, 95% CI [0.01,
0.38]). Consistent with these findings, correlation analysis
showed that participants’ eye-movement pattern similarity to
the explorative pattern (EF scale) was correlated positively
with scene recognition performance in d’, r(59) = .326, p =
.010, 95% CI [.081, .534] (Fig. 5c). These findings suggest
that the explorative strategy was associated with better fore-
ground object recognition performance.

Fig. 5 Correlation analysis between EF Scale and a average number of fixations, b average saccade length, and c scene recognition performance in d’
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To understand what factors best accounted for participants’
foreground object recognition performance, we performed a
stepwise multiple regression analysis predicting recognition
performance with all cognitive ability measures in addition
to EF scale. The results showed that only EF scale, β =
.331, p = .012, and visuospatial two-back task RT, β = .308,
p = .012, were significant predictors, R2 = .171, F(2, 57) =
7.090, p = .002. The tests for multicollinearity indicated a low
level of multicollinearity for both EF scale (tolerance = .999)
and visuospatial two-back task RT (tolerance = .999). This
result suggested that a linear combination of participants’ vi-
suospatial working memory ability and online eye-movement
pattern during scene perception best predicted their fore-
ground object recognition performance. In a hierarchical mul-
tiple regression analysis predicting foreground object recogni-
tion performance, with visual spatial two-back task RT en-
tered at the first step, we found that EF scale explained
10.3% additional variance and the change in R2 was signifi-
cant, p = .009. This finding suggested that after working mem-
ory ability was controlled, a person’s online eye-movement
pattern still contributes significantly to foreground object rec-
ognition performance in scene perception.

What cognitive abilities predict eye-movement
pattern?

To examine what cognitive abilities best accounted for indi-
vidual differences in eye-movement pattern, we performed a
stepwise multiple regression analysis predicting EF scale with
all cognitive ability measures. The results showed that flanker
task accuracy in congruent trials, β = – .300, p = .020, con-
tributed significantly to the regression model, R2 = .074,
F(1,58) = 5.719, p = .020: the more explorative the pattern,
the lower the flanker task accuracy. There was a low level of
multicollinearity for both flanker task accuracy in congruent
trials (tolerance = 1.000). This result suggested that eye-
movement pattern in scene perception is particularly related
to visual attention.

Discussion

Here we proposed a new methodology for summarizing and
quantitatively assessing individual differences in eye-
movement pattern in tasks involving stimuli with different
feature layouts by combining the EMHMM approach (Chuk
et al., 2014) with the data mining technique co-clustering. We
used one HMM to summarize a participant’s eye-movement
pattern when viewing a particular stimulus, and then used co-
clustering to discover participants sharing similar eye-
movement patterns across stimuli. By applying this method
to young Asian adults’ eye movements during scene percep-
tion, we discovered explorative (switching between the

foreground object and the background) and focused (looking
mainly at the foreground object) eye-movement patterns.
These patterns were similar to those observed in Asians and
Caucasians respectively in previous studies (e.g., Chua et al.,
2005). Note, however, that our participants were all Asian,
suggesting substantial individual differences in eye-
movement pattern during scene viewing even within a culture.
Interestingly, for images containing animal faces, participants
who focused more on the foreground object (i.e., the focused
eye-movement pattern) looked more to the eyes of the animal
faces, suggesting engagement of local attention (Miellet et al.,
2011). In contrast, those who switched between the fore-
ground object and the background more often (i.e., the explor-
ative pattern) looked more to the animal face center, suggest-
ing engagement of global processing. This result is consistent
with the literature reporting that Caucasians focused more on
the foreground object in scene perception and the eyes in face
recognition, suggesting more engagement in local attention,
whereas Asians’ lookedmore often at the background in scene
perception and the face center in face recognition, suggesting
more engagement in global attention (e.g., Blais et al., 2008).
This result also suggests that one’s eye-movement pattern in
scene perception may be associated with that in face recogni-
tion, or in other words, individuals may have a consistent
perception style across different stimulus types (e.g., Rayner
et al., 2007). Future work will examine this possibility. Note
also that using EMHMM, Chuk et al. (2017b) showed that
Asians and Caucasians did not differ in the frequency of
adopting the analytic (eyes-nose) or holistic (nose-focused)
eye-movement patterns, suggesting little modulation from
culture on eye-movement pattern when individual difference
was taken into account. Future work will examine whether a
similar phenomenon can also be observed in scene perception
through EMHMM with co-clustering.

We also observed that participants adopting the explorative
eye-movement pattern had better foreground object recogni-
tion performance than those using the focused pattern regard-
less of whether the foreground object appeared in a new or old
background, although this advantage was larger when the
foreground object appeared in the old than a new background.
This finding was generally consistent with Chua et al. (2005),
in which Asians, who looked more often at the background
than Caucasians, performed better in foreground object recog-
nition with the old background. Our finding suggests that a
more explorative eye-movement pattern during scene percep-
tion may be beneficial for remembering the foreground object
due to more retrieval cues available through exploration.
Consistent with this speculation, it has been shown that asso-
ciative processing is inherent in scene perception (Aminoff &
Tarr, 2015), suggesting that an explorative eye-movement
pattern may facilitate associative processing and consequently
enhance scene memory. This finding is in contrast to face
recognition literature, where the analytic or more eye-
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focused eye-movement pattern (which is associated with en-
gagement of local attention and the focused eye-movement
pattern reported here) was reported to lead to better recogni-
tion performance due to better retrieval of diagnostic features,
the eyes (Chuk et al., 2017b). Our multiple regression analysis
results further showed that participants’ foreground object rec-
ognition performance depended on both their visuospatial
working memory ability and eye-movement pattern during
scene perception. More specifically, a person’s online eye-
movement pattern during scene perception contributes signif-
icantly to foreground object recognition performance even
after one’s cognitive (working memory) ability is accounted
for. This result provides evidence suggesting that one’s mem-
ory of objects in a scene may be improved with instructions on
the use of an optimal eye-movement pattern.

While the explorative eye-movement pattern was asso-
ciated better foreground object recognition performance,
our multiple regression analyses also showed that the fo-
cused eye-movement pattern was associated with better
performance in the congruent trials of the flanker task,
suggesting better abilities in visual attention. The advan-
tage of the focused pattern in the congruent but not incon-
gruent or neutral trials in the flanker task suggested that
participants adopting this pattern might have better feature
integration abilities. This finding was generally consistent
with previous research: as participants adopting the fo-
cused pattern preferred to look at the eyes of the animals,
the focused pattern may be related to the analytic/more
eyes-focused eye-movement pattern in face recognition,
which was associated with better face recognition perfor-
mance, visual attention (the trail making task), and execu-
tive function (the tower of London task; Chan et al., 2018).
Future work will examine whether the focused pattern in
scene perception is indeed associated with the analytic/
eyes-nose pattern in face recognition (Fig. 1).

We also observed that images with a salient foreground
object relative to the background tended to induce large
individual differences in eye-movement pattern, and that
animal images induced larger individual differences than
vehicle images (Fig. 4). This phenomenon may be due to
our category specific attention to animals (New et al.,
2007) that made them more salient than vehicles or other
object types, providing better opportunities to induce the
difference between the explorative and focused eye-
movement patterns. It could also be a reflection of some
fundamental differences between animal and vehicle im-
ages such as the characteristics of the backgrounds. This
finding has important implications for the possibility of
using eye tracking to provide screening tools for cognitive
disorders (Chan et al., 2018), as images that induce larger
individual differences will be more likely to provide ade-
quate variance among individuals for identifying atypical-
ly eye-movement patterns.

In contrast to the original EMHMMmethod, which is lim-
ited to visual tasks involving stimuli with the same feature
layouts such as faces, EMHMM with co-clustering can be
applied to a large variety of visual tasks that involve stimuli
with different feature layouts, including scene perception,
reading, website browsing, video games, etc. It can also be
used to summarize a person’s eye-movement pattern across
tasks to obtain a personal eye-movement pattern profile. Such
a personal profile can be useful for mental health or education-
related purposes. For example, using the original EMHMM
method, we have previously shown that older adults’ eye-
movement patterns during face recognition are predictive of
their executive function and visual attention ability (Chan
et al., 2018), that impaired facial emotion recognition in indi-
viduals with sleep loss is associated with a nose-mouth eye-
movement pattern that misses the eye region (Zhang et al.,
2019), that social anxiety symptoms are associated with less
flexibility in eye-movement strategy when viewing emotional
faces (Chan et al., 2020a), and that individuals who view faces
with more nose-focused eye-movement patterns interpret
illness-related scenarios more negatively (Chan et al.,
2020b). With eye movements in a variety of visual tasks sum-
marized using EMHMMwith co-clustering, particularly those
with real life significance such as reading, website browsing,
information system usage, and perception of emotional
scenes/faces, we will have a more complete eye-movement
pattern profile for each individual to increase the accuracy in
early screening of cognitive or socioemotional disorders such
as ageing-related cognitive decline or social anxiety, as well as
to have a better understanding of the mechanisms underlying
these disorders. Similarly, in research on education, we have
used EMHMM to show that participants have better compre-
hension when using a more centralized eye-movement pattern
in viewing documentary videos (Zheng et al., 2019).
EMHMM with co-clustering will enable us to examine eye
movements in a large variety of learning tasks to understand
the relationship between eye-movement patterns and learning
performance and to discover better eye-movement strategies
for learning. A personal eye-movement pattern profile can
also be used for predicting a person’s eye-movement behavior
under existing or novel situations. For example, a participant’s
eye movements for a stimulus that has not been presented to
the participant can be inferred from how the participant’s eye
movements for other stimuli deviate from the representative
HMMs (using the log-likelihood measures). This personal
profile has a variety of applications such as video coding,
foveated rendering for virtual reality, advertisement, or human
computer interaction.

Another possible application of EMHMM with Co-
clustering is in the research on cultural differences in per-
ception style. More specifically, it has been reported that
Westerners are more likely to attribute the cause of an
event to isolated objects (analytic cognition), whereas

Behav Res



Asians are more likely to attribute the cause of an event to
the context of the event (holistic cognition; Nisbett &
Miyamoto, 2005; Ito, Masuda, & Li, 2013; Li et al., in
press), and this cultural difference has been argued to be
the mechanism underlying eye-movement pattern differ-
ence between Asians and Caucasians observed in scene
perception (e.g., Chua et al., 2005) and face recognition
(e.g., Blais et al., 2008). Nevertheless, this cultural differ-
ence has not been consistently reported in the literature.
For example, Evans et al. (2009) found no difference be-
tween American and Chinese participants in number of
fixations and fixation duration to the foreground and back-
ground (see also Rayner et al., 2007). Using EMHMM,
Chuk et al. (2017b) found no significant difference in
eye-movement pattern between Asians and Caucasians in
face recognition. EMHMM with Co-clustering will enable
researchers to examine this cultural difference across a
larger variety of visual tasks.

Finally, we note that the HMMs used in EMHMM
assume Gaussian distributions as the emission densities
for the ROIs. As 95% of the Gaussian density is within
2 standard deviations of the mean, the Gaussian is a suit-
able model for an ROI over a compact spatial region in
the image. In the case that the actual fixation distribution
is non-Gaussian, e.g., a fat-tail distribution, then the
HMM will represent it with multiple Gaussian ROIs. For
example, for a fat-tail distribution, the HMM can model
the “central” and “fat” portions with two Gaussian ROIs
with small and large standard deviation, respectively.
Future work can consider extending our EMHMM frame-
work to use other distributional assumptions, e.g., fat-tail
distributions, for the ROIs, in order to directly represent
such distributions if required.

In conclusion, we show that EMHMM with co-
clustering can effectively summarize and quantitatively
assess individual differences in eye-movement pattern in
tasks involving stimuli with different feature layouts, and
in turn lead to new discoveries not yet found by existing
methods. By applying this to scene perception, we discov-
ered the explorative and focused eye-movement patterns
among Asians. Whereas the explorative pattern was asso-
ciated with better foreground object recognition perfor-
mance, the focused pattern was associated with better fea-
ture integration and planning abilities. Also, images with
a salient foreground object relative to the background in-
duced larger individual differences in eye-movement pat-
tern. These discoveries have important clinical and educa-
tional implications for the use of eye tracking in cognitive
deficit detection and cognitive performance monitoring.
Thus, EMHMM with co-clustering can be applied to a
large variety of visual tasks and applications, making last-
ing impacts on how researchers across disciplines use eye
movements to understand cognitive behavior.
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