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Abstract
Explainable AI (XAI) methods provide explanations of AI 
models, but our understanding of how they compare with 
human explanations remains limited. Here, we examined 
human participants' attention strategies when classifying 
images and when explaining how they classified the images 
through eye-tracking and compared their attention strate-
gies with saliency-based explanations from current XAI 
methods. We found that humans adopted more explorative 
attention strategies for the explanation task than the classi-
fication task itself. Two representative explanation strategies 
were identified through clustering: One involved focused 
visual scanning on foreground objects with more concep-
tual explanations, which contained more specific informa-
tion for inferring class labels, whereas the other involved 
explorative scanning with more visual explanations, which 
were rated higher in effectiveness for early category learn-
ing. Interestingly, XAI saliency map explanations had the 
highest similarity to the explorative attention strategy in hu-
mans, and explanations highlighting discriminative features 
from invoking observable causality through perturbation 
had higher similarity to human strategies than those high-
lighting internal features associated with higher class score. 
Thus, humans use both visual and conceptual information 
during explanation, which serve different purposes, and 
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BACKGROUND

To ensure good use of AI by humans, researchers have long recognized the importance of explanation to 
enhance human-AI interaction, including the development of Expert Systems in 1980s and Knowledge-
Based Tutors in 1990s and early 2000s (Mueller et al., 2019; see Gunning et al., 2019 for an overview). 
Around the mid-2010s, a new generation of explainable AI (XAI) emerged due to the advance of deep 
learning methods, whose decision-making processes are often obscured to both users and developers. 
As compared with previous explanation solutions, these XAI methods use better visualization tech-
niques (Goyal et al., 2016) or directly make the classifiers themselves more explainable (Akata, 2013). 
However, similar to previous efforts, they remain focusing on using more AI to explain AI without 
much consideration of users' mental processes (Hoffman et al., 2018; Hsiao, Ngai, et al., 2021). This 
differs significantly from how humans provide explanations. For example, Kaufman and Kirsh (2022) 
found that in visual explanations, human explanations typically involve directing attention to relevant 
details following a sequence of visual reasoning processes, in contrast to XAI methods that simply 
highlight features used by AI classifiers without temporal information. They also suggested that human 
explanations often consider explainees' prior knowledge and qualitative reasoning styles, which are typ-
ically missing in current XAI methods. Indeed, effective human explanations often involve causal rea-
soning based on observed regularities in the world (Bender, 2020; Einhorn & Hogarth, 1986; Holzinger 
et al., 2019; Maxwell, 2004). When providing explanations about others, people use more observable be-
haviour (e.g. facial expressions, gestures, etc.) in contrast to the unobservable behaviour (e.g. thoughts, 
feelings, desires, etc.; Malle & Knobe, 1997). They also prefer explanations that invoke causality (Zemla 
et al., 2017). In particular, rather than listing all possible causes of an event in an explanation, people 
tend to provide contrastive explanations that focus on why the current event occurs instead of other 
non-occurring events (Chin-Parker & Cantelon, 2017; Miller, 2021; Van Fraassen, 1980). Knowledge 
about how humans give explanations provides important insights into ways to make explanations from 
XAI more accessible to humans.

Despite these initial efforts, our current understanding of how humans provide explanations on 
tasks that are commonly performed by AI remains very limited, especially for those involving making 
decisions based on complex perceptual processes that are often automatic and unconscious in humans 
such as image classification. Image classification has been a heated topic in computer vision, and the 
advance of deep learning methods in recent years has significantly increased automated image classi-
fication accuracy (Rawat & Wang, 2017). A common XAI method for image classification has been 
using saliency maps that highlight regions of the input image according to their importance to the AI 
model's output (Li et al., 2021). For example, to explain how an AI model classifies an image as ‘horse’ 
(Figure 1), a saliency map highlighting pixels around the head and the thigh of the horse in the image 
would suggest these are the most important visual features used by the model for this classification. 
Two major saliency map-based approaches are perturbation-based and backpropagation-based meth-
ods. Perturbation-based methods, such as RISE (Petsiuk et al., 2018), perturb the input image and place 
more weights on the pixels that affect the output class probability relative to other classes when oc-
cluded. In contrast, backpropagation-based methods, such as GradCAM (Selvaraju et al., 2020), calcu-
late the gradient of the score for the target class in a particular layer as the class relevance of each pixel. 

XAI methods that highlight features informing observable 
causality match better with human explanations, potentially 
more accessible to users.

K E Y W O R D S
EMHMM, explainable AI, explanation, eye movements, image 
classification, text analysis
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       |  3EXPLANATION STRATEGIES IN HUMAN VS XAI

Saliency-based explanations are often evaluated using different computational and cognitive metrics 
including faithfulness (Samek et al., 2017), reliability (Kindermans et al., 2019) and plausibility. Since 
humans typically attend to features important for their judgements during image classification (Hwu 
et al., 2021; Lai et al., 2020), human attention is often considered a good benchmark for plausibility 
(Karim et al., 2022; Lanfredi et al., 2021; Mohseni et al., 2021; Yang et al., 2022).

Note, however, that human attention when viewing an image has been shown to be task-driven and 
thus may differ significantly when the task demand changes (Hsiao, An, et al., 2021; Kanan et al., 2015; 
Hsiao & Chan, 2023). On one hand, saliency map-based XAI highlights image regions that contribute 
to the classifier output, and thus should be compared with human attention when performing image 
classification tasks (Lai et al., 2020). On the other hand, the purpose of the saliency maps is to provide 
explanations, and thus they may be better compared with human attention when they explain image 
classification (Yang et al., 2022). It remains unclear how human attention differs between image classi-
fication and explanation tasks. Providing explanations on how to perform a task involves metacognitive 
skills to evaluate thought processes through self-awareness (Balcikanli, 2011; Jiang et al., 2016), and thus 
explanation strategies for the task may differ from the strategies for performing the task itself. Also, 
during image classification, humans only need to attend to sufficient information for making a decision 
(Hsiao & Cottrell, 2008; Smith & Ratcliff, 2004), whereas during explanation, they may attend to all rel-
evant information to provide a comprehensive explanation (Gelman et al., 1998). Thus, human attention 
during image classification and explanation may differ significantly. Understanding whether saliency 
maps generated using the current XAI methods are better matched with human attention during image 
classification or explanation will provide important insights on what information these XAI salience 
maps reflect and how human users should interpret them.

Another factor to consider is the substantial individual differences in human attention during 
cognitive tasks as demonstrated through eye-tracking studies (Chuk et  al.,  2014; Chuk, Crookes, 
et al., 2017; Hsiao, Chan, et al., 2021; Hsiao, Lan, et al., 2021; Peterson & Eckstein, 2013), and these 
individual differences are often associated with differences in task performance and cognitive abil-
ities (An & Hsiao, 2021; Hsiao, Lan, et al., 2021). Since individuals can differ significantly in both 
cognitive and metacognitive abilities across domains (Rouault et  al.,  2018), substantial individual 
differences in explanation strategies are expected. It remains unclear how individual differences in 
explanation strategy are compared with current XAI methods. More specifically, human object cate-
gory representations involve both visual and abstract conceptual features (Martin et al., 2018), both 
of which can be used in explanations. Thus, individuals may differ in their reliance on visual or con-
ceptual information when providing explanations. Previous research has suggested that humans use 
more visual information than conceptual information to form perceptually rich representations when 
learning novel categories (Kloos & Sloutsky, 2008), suggesting the importance of visual information 
during early category learning. Since XAI saliency maps provide visual feature explanations, they 
may match better with human attention strategies associated with more use of visual information. 
If so, they may be particularly effective for early category learning (Fisher & Sloutsky, 2005). Also, 
since humans prefer explanations that involve causality and contrastive explanations (Miller, 2021; 

F I G U R E  1   Examples of saliency maps generated by an XAI method (i.e. PCB-RISE) to explain AI model's outputs.
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4  |      QI et al.

Zemla et al., 2017), saliency maps generated through perturbation methods, which use observable 
causality between input perturbation and consequent change in output class probability, may show a 
better match with human attention during explanation than gradient-based methods. The compari-
sons between different human and XAI explanation strategies will provide important insights on the 
explanation processes of both humans and XAI methods and ways to enhance XAI explanations to 
facilitate human-AI interaction.

Thus, here, we aimed to fill these research gaps by examining the following research questions:

1.	 What are the individual differences in human attention strategies when performing image 
classification and explanation tasks? Are they associated with task performance, in particular 
the differences related to the use of visual vs. conceptual information during explanation?

2.	 How do human attention strategies during image classification and explanation differ?
3.	 How are XAI saliency maps compared with human attention strategies? In particular, are XAI sali-

ency maps more similar to a particular human attention strategy during classification or explanation? 
Which XAI method matches better with human attention strategies?

To examine participants' use of visual and conceptual information in the explanations, we created 
three different measures: (1) Effectiveness for novel category learning rated by domain experts (computer 
vision scientists), which is relevant to the use of visual information; (2) Diagnosticity, that is how specific 
and informative the explanation is for identifying the class label, which is relevant to the use of concep-
tual information; and (3) explanation text characteristics analysis to directly assess the amount of visual and 
conceptual information conveyed in the explanation text.

We used eye tracking to directly measure human attention, in contrast to indirect measures such as 
the annotation or pointing approaches that are typically used in previous studies (Gelman et al., 1998; 
Mohseni et al., 2021). To quantify individual differences in visual scanning behaviour during the tasks 
and to discover representative attention strategies in humans, we adopted a machine learning model-
based approach, Eye Movement analysis with Hidden Markov Models (EMHMM; Chuk et al., 2014) 
with co-clustering (Hsiao, Lan, et al., 2021). In this approach, an individual's eye movement behaviour 
in viewing a stimulus is summarized in a hidden Markov model (HMM) in terms of person-specific 
regions of interest (ROIs) and transition probabilities among the ROIs. The co-clustering algorithm is 
then used to discover participant groups where group members adopt similar strategies to one another 
across stimuli, with each group forming a representative attention strategy. Similarities among individ-
ual strategies then can be quantitatively assessed using their data log-likelihoods given the represen-
tative strategy models. Consistency of a strategy can be assessed using entropy of the HMM (Cover & 
Thomas, 2006; higher entropy indicates lower consistency). Thus, adopting this approach allows us to 
take both spatial (ROI choice) and temporal information (the order of the ROIs visited) into account 
when quantifying individual differences in attention strategies. This approach has been applied to a 
variety of research fields and led to novel findings not discoverable by traditional methods (e.g. sum-
mary statistics of eye movement in predefined ROIs or fixation heatmaps; Barton et al., 2006; Caldara 
& Miellet, 2011), including psychology (An & Hsiao, 2021; Hsiao et al., 2022; Hsiao, Chan, et al., 2021), 
mental health (Chan et  al.,  2020; Zhang et  al.,  2019) and education (Zheng et  al.,  2022). We com-
pared human attention strategies with saliency maps generated by a representative perturbation-based 
method, RISE (Petsiuk et al., 2018) and a representative backpropagation-based method, Grad-CAM 
(Selvaraju et al., 2020) for an image classification AI model ResNet50, which has excellent classifica-
tion performance (He et al., 2016). Since RISE can be affected by the pixel distribution of the random 
masks used to generate saliency maps, we included a pixel coverage bias (PCB) corrected version of 
RISE (Xie et al., 2022).

We hypothesized that (1) in both image classification and explanation tasks, we would discover dif-
ferent attention strategies associated with different task performance, and attention strategies during 
explanation may be associated with different reliance on visual or conceptual information; (2) human 
attention strategies when explaining image classification results would cover more relevant features 
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       |  5EXPLANATION STRATEGIES IN HUMAN VS XAI

than those during image classification itself; and (3) Human attention maps from those who rely more 
on visual information would show higher similarity to XAI saliency maps, and perturbation-based 
explanations such as RISE, which highlights discriminative features by invoking causality through per-
turbation, may show higher similarity to these human attention maps.

METHODS

Participants

We recruited 62 participants (52 females1), aged 18–37 years (M = 22.5, SD = 3.8) from a local university. 
They had normal or corrected-to-normal vision. The participants included 7 native speakers of English. 
For the non-native English speakers, they started to learn English at an average age of 5.2 (SD = 2.4). 
The participants had a mean score of 71.20% (SD = 12.79%) on the Lexical Test for Advanced Learners 
of English (LexTALE; Lemhöfer & Broersma, 2012).2 Here, we examined the difference between two 
participant groups using different eye movement patterns in classification and explanation performance. 
A power analysis of independent sample t-test based on a similar study comparing eye movement pat-
tern groups on face recognition performance (Chuk, Crookes, et  al., 2017; d = 2.18) suggested that a 
sample size of 52 was sufficient (d = 0.8, α = .05, β = .2). In addition, we examined whether eye move-
ment patterns can predict the participants' performance in the two tasks. A power analysis of linear 
multiple regression indicated that 55 participants were required assuming a medium effect size ( f2 = 0.15, 
α = .05, β = .2) and one tested predictor (i.e. eye movement pattern). The informed consent was obtained 
from all participants.

Materials and apparatus

The stimuli included 160 images in 20 categories, with 8 images in each category. The 20 image catego-
ries contained 9 natural categories, including ant, corn, horse, jellyfish, lemon, lion, mushroom, snail 
and zebra, and 11 artificial categories, including broom, cell phone, fountain, harp, laptop, microphone, 
pizza, shovel, sofa, tennis ball and umbrella. These image classes were selected from human basic level 
categories (Markman & Wisniewski, 1997; Wang et al., 2015) and were also commonly used as output 
categories of image classification AI models (Russakovsky et al., 2015).

The 16 images for the categories horse and sofa were obtained from PASCAL VOC (Everingham 
et al., 2010), while the rest 144 images were from ImageNet (Deng et al., 2009). The images together 
constituted a representative set, including different levels of foreground object complexity and back-
ground saliency. All images were resized to fit into a 400 × 520 pixel frame on a blank canvas. Since the 
original images differed in their aspect ratios, white edges were added so that the images had the same 
size without any distortion.

The experiment was conducted using E-Prime 3.0 with the extensions for EyeLink (Psychology 
Software Tools) on a 255 mm × 195 mm laptop with a resolution of 1024 × 768 pixels. Each image 
spanned 9.68° × 12.32° of visual angle at a viewing distance of 60 cm. The dominant eyes of partici-
pants were tracked with an EyeLink Portable Duo eye tracker (SR Research), and a chinrest was used 
to minimize head movement. A nine-point calibration and validation procedure was performed at the 
beginning of the classification and explanation task, and recalibration took place whenever drift check 
error was over 1° of visual angle.

 1There was no gender difference in eye-movement patterns during image classification, t(59) = 0.47, p = .642, or explanation, t(60) = 0.43, 
p = .671. Female and male participants also did not differ in classification performance (accuracy: t(60) = 0.46, p = .645; RT, t(53) = 1.09, p = .279) 
or explanation performance (effectiveness: t(60) = 0.63, p = .529; diagnosticity: t(60) = 0.59, p = .559).
 2Note that one limitation of our study was the majority of the participants were non-native English speakers.
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Design

In the current study, we aimed to compare explanation strategies in humans and current XAI in image 
classification. Specifically, we examined:

1.	 Human attention strategies during image classification and explanation and their associations 
with performance: We examined participants' attention strategies as reflected in eye movement 
behaviour when classifying images (the classification task) and when explaining image clas-
sification (the explanation task). We also examined the relationship between these attention 
strategies and task performance, including accuracy and RT in the classification task, and 
explanation effectiveness, diagnosticity and text characteristics in the explanation task (see 
Data analysis section for details of how these were measured). For each task, EMHMM was 
used to discover two representative attention strategies in the participants through clustering 
and to quantify individual participants' attention strategies along the dimension contrasting 
the two representative strategies. ANCOVA was used to examine whether participants using 
the two attention strategies differed in performance measures with participants' English profi-
ciency (measured by LexTALE; see English proficiency test section) as a covariate. Correlation 
analyses were used to examine the relationship between attention strategy and performance 
measures. Hierarchical regression analyses were used to investigate whether attention strategy 
could predict performance after cognitive abilities (see Cognitive tasks and English proficiency 
test section for how they were measured) and English proficiency were controlled. These 
results were presented in Image classification task section and Explanation task section.

2.	 Comparisons between human attention strategies during image classification and explanation: To di-
rectly compare participants' attention strategies across classification and explanation tasks, in a separate 
analysis we mixed the eye movement data from the two tasks together and used EMHMM to discover 
two representative attention strategies across the two tasks through clustering. We then quantified par-
ticipants' attention strategies in the two tasks along the dimension contrasting the two discovered strate-
gies. We used paired sample t-test to examine whether participants' attention strategies in the two tasks 
significantly differed. The results were presented in Comparison of the two tasks section.

3.	 Comparisons between human attention strategies and XAI saliency maps: To compare human at-
tention strategies with XAI saliency maps, we used a 2 × 2 × 3 by-item ANOVA to examine how 
participants' task (classification vs. explanation), attention strategy (the two representative strategies) 
and XAI method for saliency-based explanations (RISE vs. PCB corrected RISE vs. Grad-CAM) af-
fected the similarity between XAI saliency maps and human attention maps for image classification. 
This ANOVA allowed us to examine whether this similarity measure would differ when the human 
attention maps were obtained from different tasks or participants using different attention strategies, 
or when XAI saliency maps were obtained using different methods. The results were presented in 
Comparison with XAI saliency maps Section.

Please refer to section Data analysis for the details of the measures and analyses.

Procedures

Participants completed two main tasks (i.e. the classification task and explanation task) with eye track-
ing, followed by four cognitive tasks and an English proficiency test (LexTALE).

Classification task

In the classification task, the participants were instructed to assign a class label to 160 images one at a 
time based on the 20 labels shown at the beginning of the experiment (Figure 2a). Each trial started 
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       |  7EXPLANATION STRATEGIES IN HUMAN VS XAI

with a drift check at the centre of the screen. After a stable fixation at the centre was detected, a fixa-
tion cross was shown at the upper left corner of the screen. The image appeared once the participant 
fixated on the cross for more than 250 ms to ensure that the first fixation on the image was planned 
by the participants. The participant's fixation was consistently directed to the left and the images were 
consistently placed on the right to match the reading direction of English (Spalek & Hammad, 2005). 
After viewing the image, the participants named the class label aloud as quickly as they recognized it. 
Their reaction time (RT) was recorded by a microphone through the voice key of the Chronos response 
box (Psychology Software Tools).

Explanation task

In the explanation task, the participants were shown the same 160 images one at a time along with the 
correct label and were asked to provide an explanation in a textbox about why the label should be as-
signed to the image based on how they classified the same image in the previous task (Figure 2b). They 
were told to imagine explaining to someone without any prior knowledge of the visual categories, such 
as a very young child, and to include sufficient information from the image to help the person learn 
how to identify the categories. Similar to the classification task, each trial started with a drift check at 
the centre of the screen and a fixation cross directed the participant's fixation to the upper left corner, 
where the class label appeared.

Before starting the explanation task, the participants were given an example explanation for an image of 
an elephant: ‘a long trunk below the eye next to a white pointy object that looks like a tusk; a big triangular 
ear’. They also completed three practice trials with images from three different classes not used in the ex-
periment to ensure that they understood the task instruction. They were reminded of the instruction and 
the example when their explanation did not have sufficient information from the image as the example.

Cognitive tasks and English proficiency test

Verbal and visuospatial two-back tasks
The two-back tasks (Lau et al., 2010) were used to measure the participants' working memory capacity. 
In the verbal two-back task, numbers were presented at the centre of the screen one at a time, and the 
participants judged whether it was the same as the one shown two trials back. In the visuospatial two-
back task, different symbols appeared at different locations one at a time, and the participants judged 

F I G U R E  2   Experimental procedure of the (a) classification task and the (b) explanation task.
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8  |      QI et al.

whether they appeared at the same location as the one shown two trials back. There were two blocks in 
total, with 28 trials each. Accuracy and RT were recorded.

The flanker task
The flanker task (Ridderinkhof et al., 1999) tested the participants' selective attention. In each trial, the 
participants were presented with five arrows and instructed to judge the direction of the central arrow. 
The other four arrows, or the flankers, pointed to the same direction as the central arrow in the congru-
ent condition and pointed to the opposite direction in the incongruent condition. In the neutral condi-
tion, the flankers were non-directional. There were 20 trials for each of the three conditions. Flanker 
effect in accuracy and RT was measured as Congruent− Incongruent

Congruent+ Incongruent
.

Multitasking test
The multitasking test (Stoet et al., 2013) assessed the participants' task-switching ability. The partici-
pants were shown four types of figures differentiated by outer shape (diamond or square) and inner 
filling (two dots or three dots). Each figure appeared either at the upper section or the lower section of 
a rectangular box. The participants judged the shape of the figure if it appeared at the upper section and 
the filling if it appeared at the lower section. The task included three blocks, with 32 trials each. The 
figures always appeared at the top in the first block and always appeared at the bottom in the second 
block (no-switching tasks). In the third block, the figures appeared randomly either at the top or at the 
bottom (dual task). Their task-switching ability was measured as the accuracy/RT in the dual task minus 
the average accuracy/RT in the two no-switching tasks.

Tower of London task
The Tower of London task (Phillips et al., 2001) assessed participants' executive function and planning 
ability. In each trial, participants were presented with one target board and one move board, each with 
three balls that were randomly distributed on three sticks. The participants were instructed to move the 
balls on the move board to make it look exactly the same as the target board with the fewest possible 
moves. There were 10 trials. Accuracy, averaged number of moves, planning time and execution time 
were measured.

English proficiency test
The LexTALE (Lemhöfer & Broersma, 2012) was used to assess the participants' English lexical knowl-
edge. This test included 60 trials, where the participants saw a string of letters and judged whether it was 
an existing English word on each trial.

Data analysis

Classification task

Task performance analysis
The participants' performance in the classification task was measured by accuracy and average RT. 
When the participant's response did not match the class label exactly, it was considered correct if 
it was a synonym (e.g. mobile phone for cell phone) or a closely related word (e.g. tennis for tennis 
ball).

Eye movement analysis
EMHMM (Chuk et al., 2014) with co-clustering (Hsiao, Lan, et al., 2021; see http://​visal.​cs.​cityu.​edu.​
hk/​resea​rch/​emhmm/​​) was used to model and quantify the participants' eye movement patterns in the 
classification task, with both spatial (fixation locations) and temporal (transitions between the locations) 
dimensions taken into account. Eye movement data from 61 participants on 160 image stimuli were used 
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       |  9EXPLANATION STRATEGIES IN HUMAN VS XAI

to perform this analysis.3 Only fixations on the image area were included in the analysis. Outlier fixa-
tions that were more than three standard deviations from the mean fixation location of the specific 
image on either the vertical or the horizontal dimension were removed. Trials where the participant 
answered incorrectly were excluded.

Each participant's eye movements in viewing one of the 160 image stimuli were summarized with 
one HMM, which included person-specific ROIs and transition probabilities among these ROIs. A 
variational Bayesian approach (Coviello et al., 2014) was used to determine the optimal number of 
ROIs for each individual HMM with a preset range of possible number of ROIs from 1 to 10. Each 
HMM with a specific number of ROIs was trained for 200 times, and the HMM with the highest 
log-likelihood was chosen. The co-clustering method was used to cluster the participants into two 
groups such that participants in the same group had similar eye movement patterns across the stim-
uli, and a representative HMM was generated for each group for each stimulus, with the number of 
ROIs set to be the median number of ROIs of the individual HMMs. The co-clustering procedure 
was repeated for 200 times to select the result with the highest log-likelihood.

The participants' eye movement patterns were quantified using the A-B scale, which was defined 
as LA −L

B

L
A
+L

B

, where LA and LB represent the log-likelihoods of a participant's eye movement data being 
classified as belonging to Pattern Group A and Pattern Group B, respectively (Chan et al., 2018; Liao 
et al., 2022; Zheng & Hsiao, 2023). A higher A-B scale indicates higher similarity to Pattern Group A. In 
addition, LA and LB were used to evaluate whether the two representative patterns differ significantly 
from each other: If the two groups indeed differed significantly, it was expected that Pattern Group A 
participants should have significantly higher LA than LB, and vice versa for participants from Pattern 
Group B (Chuk et al., 2014; Hsiao, Lan, et al., 2021). Eye movement consistency was assessed by calcu-
lating the entropy for each HMM and summing over all the stimuli (Cover & Thomas, 2006).

Explanation task

Task performance analysis
The participants' performance in the explanation task was based on the quality of the explanation text 
they provided. Two measures were used:

1.	 Effectiveness for teaching someone without prior category knowledge how to classify the image, 
measured as subjective ratings from two computer vision experts. More specifically, two rat-
ers were asked to rate on a scale from 1 to 7, where 1 indicated very low effectiveness and 
7 indicated very high effectiveness. The instructions that the participants received were first 
summarized to the raters. It was emphasized that ratings should be based on whether the 
explanation could effectively teach someone without prior category knowledge how to classify 
the image using the visual features or characteristics of the image. The raters could see the 
corresponding images when rating the explanations. Two data scientists with expertise in com-
puter vision were selected as the raters, since they had more experience in processing images 
in terms of visual features. The two raters had good inter-rater reliability, intraclass correlation 
(ICC) = .720, 95% CI [0.709, 0.731], calculated based on a mean-rating, consistency, two-way 
random-effects model. Average rating was used as the measure of effectiveness.

2.	 Diagnosticity, that is how specific and informative the explanation is for identifying the class label, 
as measured by a separate group of naïve observers' accuracy in inferring the class label directly 
from the explanation without seeing the image. More specifically, the explanations provided by 
the participants were presented to 124 naïve observers (88 females, aged 18–32 years, M = 20.08, 

 3One participant was excluded from this analysis due to suspected tracking error. In addition, six participants had inaccurately measured 
classification RT and were excluded from the subsequent analyses on this variable, but they were still included in the co-clustering analysis 
because their eye movement data were unaffected. Thus, the effects can be tested with sufficient power provided the finalized sample size (55 
valid participants).
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10  |      QI et al.

SD = 2.03) without the image. Each observer viewed 160 explanations and was asked to guess the 
category label for each explanation. Each explanation was presented to two observers, and none of 
the observers saw multiple explanations provided by the same participant for the same category. 
This group of naïve observers had an average score of 74.26% (SD = 14.29%) on the LexTALE. 
Responses that matched the original label word or any of its synonyms, hyponyms, or close hyper-
nyms were counted as correct. Percent accuracy was used as the measure of diagnosticity.

Typos, misspelled words, misused words and grammatical errors that may impede understanding 
were fixed before the evaluations.

Explanation text characteristics analysis
The explanations were tokenized and lemmatized using spaCy (Honnibal et al., 2020). The characteris-
tics of the explanation text were quantified by two measures:

1.	 Visual strength to assess reliance on visual information: The visual strength measure was retrieved 
from the Lancaster Sensorimotor Norms (Lynott et  al.,  2020), which include ratings for how 
much a word is experienced through different perceptual senses or through actions performed 
by different body parts. For instance, ‘black and white stripes’ is an explanation with high 
visual strength. It was computed for all words that had corresponding entries in the Lancaster 
Sensorimotor Norms.

2.	 WordNet similarity to the class label to reflect reliance on conceptual information: WordNet similar-
ity was calculated with the NLTK interface (Bird et al., 2009) for WordNet (Miller, 1995), which 
organizes words into sets of synonyms and connects the sets with semantic relations. We used 
path similarity, which is based on the inverse of the shortest path between two words in the hy-
pernym/hyponym taxonomy, to measure the similarity between each word in the explanations 
and the label word. For instance, ‘chair’ has high similarity to ‘sofa’. Similarity was calculated 
for all nouns that were included in WordNet but not for words with other parts of speech since 
WordNet does not link words with different parts of speech, and the first sense, or meaning, was 
always used for words with multiple senses.

The two measures were obtained for each single word, and the mean scores were computed for each 
explanation.

Eye movement analysis
The same EMHMM with co-clustering procedure was used to analyse the 62 participants' eye move-
ments on 160 images during the explanation task. Trials where the participants responded incorrectly on 
the classification task were excluded. In addition to the co-clustering analysis, the gaze preference of the 
image area and the textbox area were calculated, respectively, using the average percentage of fixations 
on the image/textbox area in each trial.

Comparison of the two tasks

Following a previous study (Hsiao, An, et al., 2021), the consistency between the participants' eye move-
ment patterns across the two tasks was examined by analysing the correlation between the A-B scales. 
In addition, we performed another EMHMM with co-clustering with the eye movement data on the 
image area from both tasks to discover representative eye movement pattern groups across the two tasks 
in order to directly compare eye movements in the two tasks. More specifically, the analysis included 
61 participants' eye movement data in the classification task and 62 participants' eye movement data in 
the explanation task, resulting in 123 participant-task combinations. One HMM was generated for each 
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       |  11EXPLANATION STRATEGIES IN HUMAN VS XAI

participant-task combination and each image stimulus. The other parameters and procedures were the 
same as those used in the analyses of the two tasks separately.

Comparison with XAI saliency maps

In this study, we also aimed to compare human participants' attention strategies in the two tasks 
with the saliency map-based explanations generated by current XAI methods. We chose a pre-
trained ResNet-50 from PyTorch (Paszke et  al.,  2019) as our image classification AI, which is a 
convolutional neural network that performs image classification with high accuracy. It extracted 
visual features from the images for classification without any other types of features (e.g. conceptual 
information) of the classes.

To compare with XAI saliency maps, we generated human attention maps (i.e. heatmaps). One heat-
map was plotted for each task and eye movement pattern group combination, resulting in four heatmaps 
for each image. Only the fixations on the image area were used and the pattern group assignment was 
based on the analyses of the two tasks separately. Each heatmap was initialized with a zero matrix that 
matched the size of the image in pixels, and each fixation point was marked as 1 in the matrix according 
to its x- and y-coordinates. A Gaussian filter with a standard deviation of 21 pixels (0.5° of visual angle) 
was applied to the matrix.

We selected commonly used XAI methods, including RISE, PCB corrected RISE, and Grad-CAM, 
to generate XAI saliency maps. The XAI methods provided explanations for the output of a pre-trained 
ResNet-50.4 The matrices of the saliency maps were normalized by setting the largest value to 1 and the 
smallest value to 0. Two similarity metrics were used to compare the saliency maps with the heatmaps: 
cosine similarity and KL divergence. Cosine similarity measures the similarity between two vectors in 
an inner product space by computing the cosine of the angle between them and was calculated using the 
following formula, where X and Y represent the vectors for two maps and ‖X‖ and ‖Y‖ represent the 
Euclidean norms of the two vectors:

KL divergence quantifies the difference between two probability distributions and was computed 
with the following formula, where P and QD represent the probability distributions of the two maps and 
ϵ represents a very small value:

R ESULTS

Image classification task

EMHMM with co-clustering resulted in two representative pattern groups: Explorative (Group A, 
with larger ROIs, exploring a wider region of an image) vs. Focused (Group B, with smaller ROIs, 
focusing on a certain part of an image) Pattern Groups (Figure 3a). The two groups differed signifi-
cantly based on KL divergence estimation (Chuk et al., 2014): F(1, 59) = 187.15, p < .001, �2

p
 = .76, 

90% CI = [0.66, 0.81].5 Explorative participants had a significantly larger number of fixations than 

 4Due to the input constraints of ResNet-50, all the images were adjusted to the size of 217 × 217 pixels before generating the heatmaps and the 
saliency maps.
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)

 590% CI instead of 95% CI is reported for F-tests since F-tests are one-sided (Steiger, 2004).
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12  |      QI et al.

F I G U R E  3   Examples of EMHMM co-clustering results of broom and lemon images for (a) the classification task only, 
(b) the explanation task only and (c) two tasks together. Ellipses show ROIs as 2-D Gaussian emissions. The table shows 
transition probabilities among the ROIs, and priors show the probabilities that a fixation sequence starts from the ellipse. In 
each pattern, the image on the right shows raw fixations and their ROI assignment.

 20448295, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bjop.12714 by Y

ueyuan Z
heng , W

iley O
nline L

ibrary on [11/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



       |  13EXPLANATION STRATEGIES IN HUMAN VS XAI

focused participants, t(59) = 3.49, p < .001, d = 0.90, 95% CI [0.34, 1.44]. They did not differ in aver-
age fixation duration, t(59) = −0.41, p = .685, d = −0.11, 95% CI [−0.61, 0.40], or in eye movement 
entropy (consistency), t(58.10) = −0.42, p = .674, d = −0.11, 95% CI [−0.61, 0.40]. We quantified par-
ticipants' eye movement pattern using A-B scale, which we referred to as EF scale (Explorative-
Focused scale).

English proficiency, as measured by LexTALE, was correlated with both classification accuracy, 
r(60) = .28, p = .026, and RT, r(55) = −.36, p = .007. ANCOVA analyses examining the effect of eye 
movement pattern group on accuracy and RT with LexTALE as a covariate showed a significant effect 
of group in RT, F(1, 52) = 6.66, p = .013, �2

p
 = .11, 90% CI = [0.01, 0.25], but not in accuracy. Participants 

in the focused group had shorter RT, Madj = 945, SEadj = 19.3, than those in the explorative group, 
Madj = 1015, SEadj = 18.9, t(52) = 2.58, p = .013, d = 0.70, 95% CI [0.14, 1.25]. Hierarchical multiple regres-
sion predicting classification RT showed that, at stage one, cognitive ability measures and LexTALE 
jointly explained 30.6% of the variance; the regression model was not significant, F(13, 40) = 1.36, 
p = .223. Adding EF scale accounted for an additional 6.4% of the variance and this change was mar-
ginally significant, F(1, 39) = 3.96, p = .054. Together the results suggested that the focused attention 
strategy was associated with shorter image classification RT.

Explanation task

Similarly, we observed Explorative and Focused Pattern Groups (Figure 3b), which differed signifi-
cantly from each other: F(1, 60) = 122.77, p < .001, �2

p
 = .67, 90% CI = [0.55, 0.74]. Explorative partici-

pants had significantly more fixations per trial, t(57.78) = 6.57, p < .001, d = 1.53, 95% CI [1.26, 2.62], 
longer average fixation duration, t(60) = 2.34, p = .022, d = 0.70, 95% CI [0.09, 1.29] and higher eye move-
ment entropy (lower consistency), t(37.01) = 8.34, p < .001, d = 2.20, 95% CI [1.66, 3.27] than focused 
participants. In addition, explorative participants had more fixations on the image region, t(60) = 4.02, 
p < .001, d = 1.19, 95% CI [0.56, 1.82], but fewer fixations on the textbox region, t(60) = 3.38, p = .001, 
d = 1.00, 95% CI [0.38, 1.61], than focused participants.

For explanation performance, English proficiency was significantly correlated with effectiveness, 
r(60) = .28, p = .029, but not with diagnosticity, r(60) = .10, p = .430. ANCOVA analyses examining the 
effect of the eye movement pattern group on these two explanation performance measures with LexTale 
controlled showed significant differences in effectiveness, F(1, 59) = 12.71, p < .001, �2

p
 = .18, 90% CI 

[0.05, 0.31], and diagnosticity, F(1, 59) = 16.74, p < .001, �2
p
 = .22, 90% CI [0.08, 0.36]: explorative par-

ticipants' explanations were rated higher for effectiveness, Madj = 4.4, SEadj = 0.09, than focused partic-
ipants', Madj = 3.7, SEadj = 0.17, t(59) = 3.57, p < .001, d = 1.06, 95% CI [0.44, 1.69]. In contrast, focused 
participants' explanations had higher diagnosticity, Madj = 0.63, SEadj = 0.02, than explorative partici-
pants', Madj = 0.53, SEadj = 0.01, t(59) = 4.09, p < .001, d = 1.22, 95% CI [0.58, 1.85]. Consistent with these 
findings, EF scale was positively correlated with effectiveness, r(60) = .45, p < .001 (Figure  4a), and 
negatively correlated with diagnosticity, r(60) = −.42, p < .001 (Figure 4b).

Hierarchical multiple regression analyses predicting explanation effectiveness showed that, at stage 
one, the cognitive ability measures and LexTALE contributed significantly to the regression model, 
ΔR2 = 39.2%, F(13, 47) = 2.33, p = .017, and at stage two EF scale significantly explained additional 
variations, ΔR2 = 9.9%, F(1, 46) = 8.98, p = .004. For predicting diagnosticity, cognitive ability measures 
and LexTALE did not contribute significantly to the regression model at stage one, ΔR2 = 28.2%, F(13, 
47) = 1.42, p = .186, while EF scale significantly explained additional variance at stage two, ΔR2 = 14.0%, 
F(1, 46) = 11.16, p = .002. Thus, after taking English proficiency and cognitive abilities into account, the 
explorative strategy was associated with explanations that were rated higher in effectiveness for teaching 
image classification, whereas the focused strategy was associated with explanations with higher diagnos-
ticity for inferring class labels without seeing the image.
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14  |      QI et al.

Visual strength was positively correlated with EF scale, r(60) = .44, p < .001, and effectiveness, 
r(60) = .50, p < .001, but negatively correlated with diagnosticity, r(60) = −.36, p = .004. In contrast, 
WordNet similarity was negatively correlated with EF scale, r(60) = −.29, p = .023, and effectiveness, 
r(60) = −.42, p < .001, but positively correlated with diagnosticity, r(60) = .31, p = .013. These results 
suggested that explorative strategies were associated with more use of visual information and less 
use of conceptual information. In addition, explanations with more visual information tended to be 
rated higher for effectiveness, while those with more conceptual information tended to have higher 
diagnosticity.

Comparison of the two tasks

No significant correlation was found between participants' EF scale of the image classification task 
and the explanation task, r(59) = .16, p = .210, suggesting that participants did not use consistent at-
tention strategies across the two tasks. To compare attention strategies in the two tasks directly, we 
used EMHMM with co-clustering on participants' eye movement patterns in both tasks together. 
The results showed similar Explorative and Focused Pattern Groups (Figure  3c), which differed 
significantly from each other: F(1, 121) = 294.30, p < .001, �2

p
 = .71, 90% CI = [0.64, 0.76]. Explorative 

Pattern Group had higher entropy (lower consistency) than Focused Pattern Group, t(78.47) = 13.95, 
p < .001, d = 2.54, 95% CI [1.98, 3.04]. Interestingly, participants' eye movement patterns were more 
explorative during explanation than during classification, t(60) = 11.95, p < .001, d = 1.53, 95% CI 
[1.16, 1.90].

Comparison with XAI saliency maps

Some examples of human attention maps and XAI saliency maps were presented in Figure 5. As shown 
in Table 1, a three-way interaction between task, strategy and XAI method was found in both similarity 
measures. When we split the data by XAI methods (Figure 6), main effects of task and strategy, and an 
interaction between task and strategy were consistently found across the XAI methods ( ps < .001). XAI 
saliency maps had higher similarity to human attention maps during the explanation task, particularly 
for the explorative strategy, which was associated a higher reliance on visual information.

We then split the data by task and strategy to examine the effect of XAI method. In all combinations 
of task and strategy, we found a main effect of XAI method in both similarity measures (ps < .001): 
Saliency maps from PCB corrected RISE had the highest similarity to human attention maps, followed 

F I G U R E  4   Correlation between EF scale in the explanation task and explanation performance as evaluated by (a) 
effectiveness and (b) diagnosticity.
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       |  15EXPLANATION STRATEGIES IN HUMAN VS XAI

by RISE, and then by Grad-CAM (Figure 7),6 suggesting that saliency maps generated by perturbation-
based XAI methods have higher similarity to human attention maps than those from gradient-based 
methods.

 6In a separate analysis, we compared XAI maps with human-segmented object masks as a control condition. We took the human attention 
maps from those with explorative strategies during the explanation task, which had the highest similarity to XAI maps, and performed 
ANOVA to examine whether saliency maps from different XAI methods (Grad-CAM, RISE, PCB-corrected RISE and human-segmented 
object masks) differed in their similarity to the human attention maps. When using either cosine similarity or KL divergence as the similarity 
measure, we found that the similarity of human-segmented object masks to human attention maps was higher than those from Grad-CAM 
(cosine similarity: t(159) = 13.28, p < .001; KL divergence: t(159) = 9.48, p < .001), but was not significantly different from RISE (cosine 
similarity: t(159) = 1.66, p = .347; KL divergence: t(159) = 2.19, p = .130) and was lower than PCB corrected RISE (cosine similarity: t(159) = 5.67, 
p < .001; KL divergence: t(159) = 7.18, p < .001). This result suggested that PCB corrected RISE's higher similarity to human attention could not 
be completely accounted for by the object containing the saliency map/object segmentation. Indeed, human attention for image classification 
typically focuses on important features for the task, rather than simply following object segmentation.

F I G U R E  5   Example human attention maps and XAI saliency maps, with one image from an artificial category 
(cellphone) and one image from a natural category (snail).
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16  |      QI et al.

DISCUSSION

Here, we examined human attention strategies for image classification and for explaining image clas-
sification and compared them with current saliency map-based XAI explanations. Using EMHMM, 
we discovered focused (focused visual scanning on the foreground object) and explorative (explora-
tive scanning at a broader region) attention strategies in both classification and explanation tasks. 

T A B L E  1   Results of the task × eye movement strategy × XAI method ANOVA on cosine similarity and KL divergence 
(*p < .05, **p < .01, ***p < .001).

Effect

Cosine similarity KL divergence

F p �
2

p
F p �

2

p

Task 240.46 <.001*** .60 133.81 <.001*** .46

Strategy 296.74 <.001*** .65 350.14 <.001*** .60

XAI Method 265.87 <.001*** .63 176.61 <.001*** .53

Task × Strategy 243.68 <.001*** .61 124.38 <.001*** .44

Task × XAI Method 39.97 <.001*** .20 18.88 <.001*** .11

Strategy × XAI Method 2.80 .091 .02 66.15 <.001*** .29

Task × Strategy × XAI Method 76.44 <.001*** .32 11.79 <.001*** .07

Note: The Greenhouse–Geisser correction was used for all of the effects that involved XAI methods due to violations of the sphericity 
assumption.

F I G U R E  6   Difference in cosine similarity (row above) and KL divergence (row below) between the two strategies 
for the two tasks and each of the three XAI methods (error bars: 95% CI; *p < .05, **p < .01, ***p < .001). Note that greater 
similarity is indicated by higher cosine similarity and lower KL divergence.
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       |  17EXPLANATION STRATEGIES IN HUMAN VS XAI

Participants did not consistently adopt the same strategies across the two tasks, and they adopted 
more explorative strategies for explanation than the classification task itself. This result suggested 
humans adjust their attention strategies according to the task demand (Chuk, Chan, & Hsiao, 2017; 
Hsiao, An, et al., 2021; Kanan et al., 2015). In addition, in image classification, focused strategies 
predicted faster responses. In contrast, in explanation, focused strategies were associated with expla-
nations with higher diagnosticity, that is containing more specific information for inferring image 
classes, whereas explorative strategies were associated with higher frequency to attend to the image 
region and explanations rated higher for effectiveness for early category learning. Interestingly, cur-
rent saliency-based XAI explanations were more similar to human attention strategies in the expla-
nation task, especially the explorative strategies, rather than those during image classification. In 
particular, saliency maps generated by perturbation-based XAI methods including PCB corrected 
RISE and RISE, which highlight input features that lead to output class probability change when 
being perturbed, had higher similarity to human attention maps than the backpropagation-based 
XAI method Grad-CAM. This result was consistent with previous research suggesting causal rea-
soning based on observed regularities as an important feature in human explanations (Einhorn & 
Hogarth, 1986; Holzinger et al., 2019; Zemla et al., 2017).

Theoretical implications

The finding that participants used more focused attention strategies for image classification and more 
explorative strategies for explanation was consistent with our hypothesis that human attention strate-
gies during explanation may cover more relevant features than those during image classification itself. 
More specifically, image classification may require attention to just sufficient information for making 
a classification decision (Hsiao & Cottrell, 2008; Smith & Ratcliff, 2004), whereas explanation may re-
quire attention to as much relevant information as possible to be comprehensive (Gelman et al., 1998). 
Consistent with this finding, here, we found that in image classification, a more focused attention strat-
egy had faster response speed, suggesting that focusing on identifying critical features of the foreground 
object is beneficial for classification.

F I G U R E  7   Difference among the three XAI methods (RISE, PCB Corrected RISE, Grad-CAM) in cosine similarity 
(row above) and KL divergence (row below) in each of the four task and strategy combinations (error bars: 95% CI; *p < .05, 
**p < .01, ***p < .001). The black reference lines refer to the average similarity between human-segmented object masks and 
human attention maps for comparison purposes.
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In explanation, a more explorative attention strategy was associated with higher ratings in effec-
tiveness for novel category learning, higher frequency to attend to the image region than the textbox 
region, and more use of visual information in the explanation text, as compared with the focused strat-
egy. This result suggested that explorative scanning for relevant visual features to the object class is 
beneficial for providing explanations for early category learning. In contrast, explanations with a more 
focused scanning on the foreground object were rated lower in effectiveness but were associated with 
higher diagnosticity for inferring the class label and more use of conceptual information in the expla-
nation text. We also found that visual information enhanced effectiveness, consistent with the previous 
finding that visual information is more important for early category learning (Kloos & Sloutsky, 2008). 
In contrast, conceptual information made it easier for people who already knew the image classes to 
guess the class label, consistent with the finding that conceptual information is more dominant in 
category representations developed later (Fisher & Sloutsky, 2005). Thus, attention strategies revealed 
participants' preference in information use during explanation, which was in turn associated with ex-
planations that served different purposes. EMHMM allowed us to discover representative attention 
strategies and quantify individual strategies, leading to these novel findings.

Although saliency map-based XAI methods are designed to highlight features used by AI for per-
forming the task, we found that saliency maps generated by XAI for image classification had higher 
similarity to human attention strategies during explanation than during the image classification task 
itself. This finding suggests that the current XAI methods highlight all features that are relevant to AI's 
classification decision, similar to how humans explain image classification. While this finding may also 
suggest that AI uses more features for image classification than humans, it is important to note that 
AI's decision processes can be fundamentally different from humans'. More specifically, a fundamental 
difference between humans and AI is in their attention mechanisms: humans process bits of visual 
information at a time through a sequence of eye fixations, whereas AI models do not have this visual 
anatomy constraint and can process all information simultaneously (Hsiao et al., 2022). Thus, human 
decisions involve accumulation of evidences sequentially (Lee & Cummins, 2004), whereas in AI all 
relevant information can be processed in parallel (Raschka et al., 2020).

We also found that XAI saliency maps had higher similarities to the explorative than the focused 
attention strategy during human explanations, and in humans' explorative strategy was associated with 
higher reliance on visual information. Indeed, another difference between human and AI image clas-
sification is the type of information available for decision-making: the AI model under examination is 
designed to use visual information only; in contrast, human representations for object classes contain 
both visual and conceptual information (Martin et  al.,  2018), which can be flexibly and selectively 
attended to for decision-making. Also, in human category learning, both visual exemplars and verbal 
explanations play an important role: verbal explanations provide crude rules for the category structure, 
while visual exemplars can be used for finer adjustments based on these rules (Moskvichev et al., 2019).

Through comparing human attention maps with XAI saliency maps, we found that the XAI saliency 
maps generated by perturbation-based methods (RISE and PCB corrected RISE) consistently had higher 
similarity to human attention maps than those from the backpropagation-based method (Grad-CAM). This 
result suggested that human attention strategies during explanation may be more similar to the perturbation-
based than the backpropagation-based XAI approach. Perturbation-based methods highlight input features 
that have causal influence on the classification output probability. In contrast, backpropagation-based meth-
ods highlight features according to the gradient output class score in a particular input layer. Our findings 
are consistent with the literature where human explanations are typically characterized by the emphasis on 
observable causality (Einhorn & Hogarth, 1986; Holzinger et al., 2019).

Practical implications

Our results showed that humans can use both visual and conceptual information for explaining image 
classification. This finding has important implications for developing human-accessible explanations 
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in XAI. For example, in addition to XAI saliency maps, some recent studies have developed concept-
based approaches to provide explanations using human-friendly concepts (e.g. striped, curly, etc.) 
for image classification models (Kim et al., 2018). Our findings suggest that visual and conceptual 
explanations serve different purposes and thus both are important for providing human-accessible 
explanations.

We also found that human attention strategies during explanation had higher similarity to the 
perturbation-based than the backpropagation-based XAI approach. This finding suggested that XAI 
saliency maps generated by perturbation-based methods may better match human attention strategy 
for explanation, potentially more accessible to AI users. Indeed, in human category learning, contras-
tive explanations with exemplars highlighting features discriminative of different categories have been 
shown to facilitate learning performance as compared with non-contrastive explanations with within-
category exemplars (Hammer et al., 2009; Kang & Pashler, 2012; Nosofsky & McDaniel, 2019). Thus, 
saliency maps from perturbation-based methods may better facilitate user understanding of AI than 
backpropagation-based methods. Future work may examine this possibility.

Another practical implication from our study is related to evaluating and benchmarking XAI sa-
liency maps. Recent research has proposed to use human attention (Liu et al., 2023, 2024; Mohseni 
et al., 2021; Zhao et al., 2024) as a benchmark for evaluating plausibility of saliency map-based expla-
nations. Our results suggested that we need to take individual differences into account when devel-
oping such benchmarks. More specifically, since individuals differ significantly in attention strategies 
in explanation, which were associated with different aspects of explanation quality, we may develop 
different benchmarks that better suit the explanation needs. Since collecting a large amount of human 
attention data for benchmarking purposes is often time-consuming, Yang et  al.  (2022) developed 
a Human Saliency Imitator model to automatically generate a human attention map given an input 
image using a deep learning model trained with human attention data with high accuracy (Pearson 
Correlation Coefficient = .88 on validation). These simulated data can also be used for developing other 
applications that require human attention data such as human-in-the-loop systems (Gil et al., 2019), 
demonstrating the importance of simulated data as a new trend in AI/cognitive science research (De 
Melo et al., 2021).

Our discovery of different explanation strategies from human explainers also suggested that explain-
ees may differ in the type of explanations that is more accessible to them, and human explainers may ad-
just their strategy according to explainees' needs (Kaufman & Kirsh, 2022; Strauss & Ziv, 2012). Thus, 
future XAI development may consider learners' preferences for providing more accessible explanations. 
Indeed, most recent XAI research has started to consider the importance of inferring humans' mental 
state when providing explanations (Hsiao,  2024; Hsiao & Chan,  2023), as inspired by an important 
cognitive capacity in human social interaction, theory of mind (i.e. the capacity to understand others' 
behaviour by attributing mental states to them; e.g. Akula et al., 2022). For example, it may be benefi-
cial to use more visual information when explaining novel categories or explaining to young children 
without much category knowledge. In addition, Hammer et al.  (2009) discovered that in contrast to 
older children and adults, young children had difficulties with identifying between-category differences 
and thus learned better through comparing same-class exemplars. In this case, prototype-based XAI 
methods, which use the most representative objects of the category as explanation exemplars, may be 
more suitable. Indeed, humans are shown to prefer prototype-based approaches during early category 
learning (Minda & Smith, 2001; Smith & Minda, 1998).

Limitations and future work

Note that in the current study, we selected Grad-CAM as the representative backpropagation-based 
method and RISE and PCB-RISE as the representative perturbation-based methods to be compared 
with human explanation strategies. It remains unclear how other saliency-based XAI methods such as 
LIME (Ribeiro et al., 2016; it can be considered as a perturbation-based method, Das & Rad, 2020, 
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or a surrogate model method, Sokol et al., 2019) are compared with human attention strategies during 
explanation observed here. This can be examined in future work.

Our results, here, have demonstrated the similarities and differences between XAI and human ex-
planation strategies. Humans and XAI may also work together to improve explanation quality. This 
concept of human-in-the-loop system has been adopted in AI design. For example, task-driven human 
attention can be integrated into AI systems to boost their performance, especially when humans pro-
vide better information extraction strategies (Lai et al., 2020; Rong et al., 2021). Future studies may 
explore how human attention can be incorporated into XAI methods to make XAI's explanations more 
accessible to humans. For instance, saliency-based XAI methods highlight important regions without 
providing a logical temporal sequence for users to understand the links among them (Kaufman & 
Kirsh, 2022). Integrating human attention, which contains temporal information, may help guide users 
to reach better comprehension. XAI with the ability to infer user strategy may compare it with AI's 
strategy and inform user when to trust or not to trust AI.

CONCLUSION

In conclusion, here, we showed that human explanation for image classification involves exploring 
more relevant features than the classification task itself, which only requires sufficient information for 
decision-making. Humans also differed in the use of explorative vs. focused attention strategies dur-
ing explanation. These strategies were associated with differential reliance on visual and conceptual 
information in the explanation that served different purposes. The finding that features used by AI as 
revealed by current saliency-based XAI methods had the highest similarity to the explorative explana-
tion strategy in humans demonstrated a fundamental difference between AI and human: AI could 
use all relevant information in parallel, whereas human attention involved sequential processing to ac-
cumulate evidence. Interestingly, XAI saliency maps that highlight discriminative features informing 
causality matched better with human attention strategies for explanation, suggesting that establishing 
causality characterizes human explanation and can potentially make explanations more accessible to 
AI users. These findings have important implications for developing user-centred XAI methods to 
enhance human-AI interaction.
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